A Study on Hyperspectral Remote Sensing Classifications
نویسندگان
چکیده
In this paper, we discuss about hyperspectral image processing where it plays an important role in remote sensing, hyperspectral verses multispectral image processing and image classifications. Where these classifications includes image sensors, image preprocessing, object detection, object segmentation, feature extraction and object classification. Mainly there are two types of classifications we are describing they are supervised and unsupervised
منابع مشابه
Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملDecision Fusion Based on Hyperspectral and Multispectral Satellite Imagery for Accurate Forest Species Mapping
This study investigates the effectiveness of combining multispectral very high resolution (VHR) and hyperspectral satellite imagery through a decision fusion approach, for accurate forest species mapping. Initially, two fuzzy classifications are conducted, one for each satellite image, using a fuzzy output support vector machine (SVM). The classification result from the hyperspectral image is t...
متن کاملMapping of stream microhabitats with high spatial resolution hyperspectral imagery
Maximum likelihood supervised classifications with 1-m 128 band hyperspectral data accurately map in-stream habitats in the Lamar River, Wyoming with producer’s accuracies of 91% for pools, 87% for glides, 76% for riffles, and 85% for eddy drop zones. Coarser resolution 5-m hyperspectral data and 1-m simulated multiband imagery yield lower accuracies that are unacceptable for inventory and anal...
متن کاملAssessing the Impact of Spectral Resolution on Classification of Lowland Native Grassland Communities Based on Field Spectroscopy in Tasmania, Australia
This paper presents a case study for the analysis of endangered lowland native grassland communities in the Tasmanian Midlands region using field spectroscopy and spectral convolution techniques. The aim of the study was to determine whether there was significant improvement in classification accuracy for lowland native grasslands and other vegetation communities based on hyperspectral resoluti...
متن کاملClassification of Grassland Successional Stages Using Airborne Hyperspectral Imagery
Plant communities differ in their species composition, and, thus, also in their functional trait composition, at different stages in the succession from arable fields to grazed grassland. We examine whether aerial hyperspectral (414–2501 nm) remote sensing can be used to discriminate between grazed vegetation belonging to different grassland successional stages. Vascular plant species were reco...
متن کامل